Chip-based three-dimensional cell culture in perfused micro-bioreactors.

نویسندگان

  • Eric Gottwald
  • Brigitte Lahni
  • David Thiele
  • Stefan Giselbrecht
  • Alexander Welle
  • Karl-Friedrich Weibezahn
چکیده

We have developed a chip-based cell culture system for the three-dimensional cultivation of cells. The chip is typically manufactured from non-biodegradable polymers, e.g., polycarbonate or polymethyl methacrylate by micro injection molding, micro hot embossing or micro thermo-forming. But, it can also be manufactured from bio-degradable polymers. Its overall dimensions are 0.7 1 x 20 x 20 x 0.7 1 mm (h x w x l). The main features of the chips used are either a grid of up to 1156 cubic micro-containers (cf-chip) each the size of 120-300 x 300 x 300 micron (h x w x l) or round recesses with diameters of 300 micron and a depth of 300 micron (r-chip). The scaffold can house 10 Mio. cells in a three-dimensional configuration. For an optimal nutrient and gas supply, the chip is inserted in a bioreactor housing. The bioreactor is part of a closed sterile circulation loop that, in the simplest configuration, is additionally comprised of a roller pump and a medium reservoir with a gas supply. The bioreactor can be run in perfusion, superfusion, or even a mixed operation mode. We have successfully cultivated cell lines as well as primary cells over periods of several weeks. For rat primary liver cells we could show a preservation of organotypic functions for more than 2 weeks. For hepatocellular carcinoma cell lines we could show the induction of liver specific genes not or only slightly expressed in standard monolayer culture. The system might also be useful as a stem cell cultivation system since first differentiation experiments with stem cell lines were promising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro-bioreactor array for controlling cellular microenvironments.

High throughput experiments can be used to spatially and temporally investigate the many factors that regulate cell differentiation. We have developed a micro-bioreactor array (MBA) that is fabricated using soft lithography and contains twelve independent micro-bioreactors perfused with culture medium. The MBA enables cultivation of cells that are either attached to substrates or encapsulated i...

متن کامل

Perfused multiwell plate for 3D liver tissue engineering.

In vitro models that capture the complexity of in vivo tissue and organ behaviors in a scalable and easy-to-use format are desirable for drug discovery. To address this, we have developed a bioreactor that fosters maintenance of 3D tissue cultures under constant perfusion and we have integrated multiple bioreactors into an array in a multiwell plate format. All bioreactors are fluidically isola...

متن کامل

Periodic harvesting of embryonic stem cells from a hollow-fiber membrane based four-compartment bioreactor.

Different types of stem cells have been investigated for applications in drug screening and toxicity testing. In order to provide sufficient numbers of cells for such in vitro applications a scale-up of stem cell culture is necessary. Bioreactors for dynamic three-dimensional (3D) culture of growing cells offer the option for culturing large amounts of stem cells at high densities in a closed s...

متن کامل

Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture.

A hallmark of Parkinson's disease is the progressive loss of nigrostriatal dopaminergic neurons. We derived human neuroepithelial cells from induced pluripotent stem cells and successfully differentiated them into dopaminergic neurons within phase-guided, three-dimensional microfluidic cell culture bioreactors. After 30 days of differentiation within the microfluidic bioreactors, in situ morpho...

متن کامل

Micro Fluid Dynamics in Three - Dimensional Engineered Cell Systems in Bioreactors

B ioreactors allowing direct perfusion of culture medium through tissue-engineered constructs may overcome diffusion limitations associated with static culturing, and may provide flow-mediated mechanical stimuli. The hydrodynamic stress imposed on cells in these systems will depend not only on the culture medium flow rate but also on the scaffold three dimensional (3D) micro-architecture. We pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008